A note on the spectrum of linearized Wenger graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearized Wenger graphs

Motivated by recent extensive studies on Wenger graphs, we introduce a new infinite class of bipartite graphs of the similar type, called linearized Wenger graphs. The spectrum, diameter and girth of these linearized Wenger graphs are determined.

متن کامل

Linearized Reed-Solomon codes and linearized Wenger graphs

Let m, d and k be positive integers such that k ≤ me , where e = (m, d). Let p be an prime number and π a primitive element of Fpm . To each ~a = (a0, · · · , ak−1) ∈ F k pm , we associate the linearized polynomial f~a(x) = k−1 ∑ j=0 ajx p . And, to each f~a(x), we associated the sequence c~a = (f~a(1), f~a(π), · · · , f~a(π pm−2)). Let C = {c~a | ~a ∈ F k pm} be the cyclic code formed by the s...

متن کامل

On the spectrum of Wenger graphs

Article history: Received 14 April 2013 Available online 5 March 2014

متن کامل

A note on vague graphs

In this paper, we introduce the notions of product vague graph, balanced product vague graph, irregularity and total irregularity of any irregular vague graphs and some results are presented. Also, density and balanced irregular vague graphs are discussed and some of their properties are established. Finally we give an application of vague digraphs.

متن کامل

A Note on Tensor Product of Graphs

Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.09.033